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Abstract

We discuss issues related to modeling of nonlinearities and hysteresis arising in a class of
magnetorheological-based smart elastomers. The dynamic models, intended for use in parameter
estimation and control problems, are presented in the context of simple elongation of a filled
rubber-like rod. Theoretical, computational and experimental results are given.

1 Introduction

Smart material structures and fluids are generally understood to be structure and fluid composites
that possess the capability to sense and actuate in a controlled manner in response to variable ambi-
ent stimuli. These are in actuality smart material systems which involve combinations of advanced
sensors, actuators and microprocessors. Effective practical use of these systems in specific appli-
cations depends on fundamental developments related to a number of important modeling issues
involving these composites. In particular one must have (i) models for the composite host system
including sensors and actuators and (ii) models describing host system responses to input signals
to the actuator. The first of these is the inactive host system model while the latter refers to the
system undergoing actuation in response to stimulation. For example, detailed discussions of issues
related to models for self-sensing, self-actuating structures based on piezoceramic sensors/actuators
can be found in [9]. Piezoceramic-based smart systems are a rapidly maturing technological field
with a large literature (a substantial number of references are given in [9]). Another class of systems
based on magnetorheological (MR) solids and fluids is far less developed and questions related to
these systems are the main focus of our discussions in this presentation.

MR elastomers [26],[27], which are solid analogs of MR fluids, are rubber-like composite struc-
tures filled with active as well as inactive substances. Magnetically permeable particles (such as
carbonyl iron) are added to a viscoelastic polymeric material prior to crosslinking. A strong external
magnetic field is applied before and during crosslinking. This field induces dipole moments within
the particles, which seek minimum energy states. Particle chains with collinear dipole moments are
formed and curing of the polymeric host material locks the chains in place. The resulting product
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is a composite material with variable elastic modulus (maximum modulus changes of between 30%
and 40% have been reported in experimental data [26] in response to an applied external magnetic
field).

Models of the response of the elastomer to an applied magnetic field involve induced stress as a
function of induced magnetic flux density. This in turn involves understanding the dependence of
the elastic modulus on the induced magnetic flux. Modeling, which is truly in its infancy, can be
based on magnetic dipole interactions between adjacent particles. Since the value of the magnetic
permeability varies dramatically between particles and host material, it is to be expected that
homogenization techniques [10], [16], [22] will play a significant role in any careful modeling of
effective moduli. Early results [32] suggest that the magnetic permeability is a nonlinear function
of the magnetic potential and hence nonlinear homogenization [15] formulations will be necessary
to develop models in category (ii) above.

Our discussions here will be on models for the dynamical response of the composite host, i.e.,
inactive filled elastomers or filled viscoelastic structures. Thus we focus on issues related to require-
ment (i) above. Such models involve nonlinear and hysteretic formulations in a significant way. We
describe some of our efforts with model development, estimation and experimental verification.

2 Nonlinear Constitutive Laws

Our early efforts focused on understanding the nonlinearities inherent in the dynamic response
of rubber-like compounds to applied loads and impulsive disturbances. First we outline the
development of our basic model, then turn to theoretical foundations and experimental results.

Most models for elastomers found in the literature are based on strain energy function (SEL)
and finite strain theories (see [6] and references there). To illustrate our approach (which is based
on the same principles), we take a simple example (for a detailed development see [6]): an isotropic,
incompressible, rubber-like rod with a tip mass undergoing simple elongation with a finite applied
stress in the principle axis direction z1 = 2. For neo-Hookean materials the finite stress theory
(or the Mooney theory with SEF U/ = Cy(I; — 3)) leads to a true stress T = Z(\? - )\1—1), or an
engineering stress

T FE 1

Here A; are the principle extension ratios which represent the deformed length of unit vectors
parallel to the principal axes (the axes of zero shear stress), and the first strain invariant [ is
I = A2 4+ A2+ )\% In this case the dynamical problem reduces to a 1 — D problem. In terms of the
finite strain €,, and the deformation u in the z direction we have

ou Ou\ 2 Ou\ 2
2 _ e = — P = —_—
/\1_1+26M_1+28$+<8x) <1+8x) .

This can be used in the Timoshenko theory for longitudinal vibrations of a rubber bar with a tip
mass to obtain (p = mass density, I'(t) = applied external force, A, is the cross sectional area, M
is the tip mass, ¢ is the gravitational constant)

0*u 0S8
Aces — — = x </t
p 92 2 0 <z <
0*u
M 92 (t,0) = =S|z=¢ + F(t)+ My (1)
where 5, the internal stress resultant, is given by
AE 1 o\ AE_ [0u 0*u

S = M- —=)+CpA.—— = — CpAc——. 2
g (M) Oy 39<am)+D Dtz 2)



Here E is the generalized modulus of elasticity and §(£) = 1+&—(1+&)7% A Kelvin-Voigt damping
term is included in the stress as a first attempt to model damping (Cp is the Kelvin-Voigt damping
coefficient). This leads to the nonlinear partial differential equation

0%u 0 (FA, [0u ou 0%u
PAcW‘a—x(g <8_x+g<8:c))+ACD8t8)_0 bt ®)

82 EA, [0u Ou 0%u
[ (t0) = ( ; (a_.;c”(a:c))“‘ CDM )Iz:fz+F(t)+Mg (4)
u(t,0) =10, u(0,z)=A(z), u(0,2)=0, (5)

for dynamic longitudinal displacements of a neo-Hookean material rod in extension. Here the initial
configuration is given by A(z) and g(£) = £ — (1 + £)72. This model in variational formulation is
given by

pAcuy + Aju+ Ague + D g(Du)=F in V7, (6)

where V' is an appropriately chosen Hilbert space.

Several theoretical and practical questions arise in connection with this model. The most
fundamental is the well-posedness of the initial boundary value problem associated with (3)-(5). It
is shown in [4] that a unique weak solution of (3)-(5) exists even under more general circumstances,
i.e., for a broad class of nonlinearities g. This is important, since comparison between experimental
data and preliminary numerical calculations suggested that the neo-Hookean nonlinearity is not
adequate to describe the behavior of filled elastomers. To estimate the correct ¢ and the other
unknown parameters in (3)-(5), namely, p, F, and Cp, free release experiments were performed
(for details see [6]).

For the experiments a slender rod composed of unfilled natural rubber was used. The rod had a
tip mass to guarantee that it remains in simple extension and compression is not present. Initially,
the rod was lifted so that it was at its natural length. Then the support was removed, allowing
the mass to fall freely. The rod achieved approximately 34% maximum dynamic strain during this
test. The data collected by the load cell on top of the sample were used to estimate the unknown
parameters.

In one general parameter estimation formulation, equation (6) takes the form

pAcu + Ar(g)u+ Ax(q)us + D™g(q)(Du) = F(q) (7)
w(0) = A(z), u(0)=0, (8)

where the structural operators Ay, Ay, the nonlinearity g and the input F have all been parame-
terized by a vector (possibly infinite dimensional) parameter ¢ that must be estimated. Here the
parameter ¢ takes values from an admissible parameter set (). Suppose that we have a set of
measured observations z = {z;}X | corresponding to measurements (e.g., displacements, Velocmes)
taken at time ¢;. In a general least squares parameter estimation problem, we seek to minimize the
least squares output functional

o) = |G {Cfulti 1) — =3} (9)

over g € @, where {u(t;,-;q)} are the parameter-dependent solutions of (7)-(8) evaluated at time

ti,i=1,2,...K,and |-| is an appropriately chosen Euclidean norm. The operators (', C5 depend
on the type of the collected data. For example, if z; is time domain displacement, velocity or

acceleration at a point z, then C; involves differentiation (0,1 or 2 times, respectively) with respect



to time followed by pointwise evaluation in ¢ and z. The operator C is the identity in the case
of time domain identification, while it is related to the Fourier transform if we consider fitting the
data in the frequency domain (see Chapter 5 of [9] for details).

In this formulation the minimization problem involves an infinite dimensional state space and
(in general) an infinite dimensional admissible parameter set @. To overcome this difficulty and
to obtain a computationally tractable method, we use the general ideas described in [9]. Namely,
let HN be finite dimensional subspaces of the state space H, and Q™ be a sequence of finite
dimensional sets approximating the parameter set ¢). Denote the orthogonal projections of H
onto HYN by PN. One can formulate a family of approximating estimation problems with finite
dimensional state spaces and finite dimensional parameter sets in the following way: find ¢ € QM
which minimizes

IN(g.2) = |G { G (10} — 1= )] (10)

where uN(t;¢) € HY is the solution to the finite dimensional approximation of (7)-(8) given by:

(uy s O)vp vy + (Ar(@)u™, )y v + (Asul’, d)vp v, + (9(q)(Du™), Do)
= (F(t;9), ®)vy v (11)
u¥(0) = PVA(z), ul¥ (0) =0 (12)

for all ¢ € HY. Here V < V3 — H in a Gelfand quintuple (see [9]).

Solution of these approximate estimation problems (10)-(12) provides one with a sequence
of parameter estimates {gV"™}. A crucial question is if one can guarantee that this sequence (or
some subsequence) converges to a solution of the original infinite dimensional parameter estimation
problem. Under certain suitable assumptions on the approximating spaces HV and approximating
sets QM it is shown in [11] that ¢™M — ¢*, where ¢* solves the parameter estimation problem for
(9).

The above scheme was implemented using linear splines to generate the approximating state
spaces and to approximate the nonlinear term g (see [6]). Figure 1 depicts the best fit to the data
that can be achieved using a linear g, and definitely suggests that a nonlinear function is required
to successfully model the behavior of the rubber rod. Figure 2 depicts the fit achieved using a
four-term piecewise linear g. This fit is much better and captures the nonlinear behavior as well.
However, as the same experiments and calculations were repeated for medium and highly filled
elastomer rods, the best attainable fit deteriorated, indicating that in these cases the hysteretic
behavior also must be taken into account.

3 Hysteretic Models

3.1 Conceptual Issues

The efforts described above on nonlinear aspects of rubber dynamics also conclusively demonstrated
the (not surprising) importance of hysteresis in our understanding of filled host dynamic response.
This is an often studied and seldom resolved aspect of viscoelastic material dynamics which usually
begins with constitutive stress-strain formulations. A huge literature on modeling of viscoelastics
and rubbers currently exists (e.g., [12], [14], [19], [34], among the many discussed in [35]). Two
types of models for stress-strain relationships can be found in the literature on viscoelastic mate-
rials. One is developed on the basis of the phenomenological mechanical behavior of the samples,
while the other concentrates on the microscopic behavior of the fibers, such as the changes in the
crosslinking and the contour length of fibers, and on the different relaxation times of fibers. The
most fundamental model is the Boltzmann integral model, which attempts to capture the viscosity
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Figure 1: (left) Time domain approximation with a linear ¢, and (right) the FFT of the solution
and the data.
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Figure 2: (left) Time domain approximation with a four-term piecewise linear g, and (right) the
FFT of the solution and the data.



of the material and the history dependence of the stress on the strain and/or strain rate; the latter
characteristic is a signature of rubber materials. As is well known, the Boltzmann integral can be
reduced easily to some well-known differential models, e.g., Kelvin-Voigt and Maxwell. Due to the
fundamental importance of the Boltzmann integral, we digress here to briefly outline its foundation.

The major assumption (a principle of superposition) made by Boltzmann is that linear models
can be added together to generate more complicated models (see [28]). This assumption is referred
to as the Boltzmann Superposition Principle (see [18], p. 6).

One can generalize the basic Kelvin-Voigt and Maxwell models (see [35], Chap. 3 for a detailed
discussion) to relate the stress and strain by

e(t) = ooJ(t)[H(t)] where o = og[H(1)] (13)
o(t) = eoY(t)[H(t)] where e =¢o[H(?)] (14)

for functions J(t) and Y(¢) that are termed the creep compliance function and the relaxation
modulus function, respectively. Here H is the usual Heaviside function. Boltzmann generalized the
above models to account for variables o(t) and e(¢) (e.g., the results from stretch and relaxation
tests) by considering a succession of infinitesimal steps de(t) for (13) or a succession of infinitesimal
steps do(t) for (14).
As a result, one obtains

do(t) =de(s)Y(t — s)[H(t—s)] . (15)

de(s)
ds

ds, set t > s, and integrate (15) from —oo to ¢ to obtain

o(t) = /_too Yt - s)dz(;)ds .

A similar expression for € in terms of the kernel J and the history of the stress rate can be obtained.
The above integral is referred to as a Boltzmann integral since it conforms with the fundamentals of
superposition as enunciated by Boltzmann. Physical models that consist of a continuum of springs
and dashpots are often associated with such integrals since they result from the limit of summing
an infinite number of Maxwell and Kelvin-Voigt models (see [18], [35]).

Typical nonlinear behaviors of the stress and strain in rubber materials under finite (i.e., non-
infinitesimal) deformation include a continuous increase of strain at decreasing rates upon loading,
variable magnitudes of the strain subject to rates of loading, and different loading and unloading
paths due to hysteretic memory effects. In addition, there are other nonlinear features that are
particular to the samples under study. These traits can be modeled accurately to some degree using
theories for finite deformations alone; however, to fully describe nonlinear viscoelastic materials,
it is desirable to also consider internal chemical and physical interactions involving long chain
molecules and fillers. We refer the reader to [23] for the derivations of internal variable models and
internal solid models, which are based on the molecular point of view. The previously mentioned
Kelvin-Voigt model, Maxwell model and Boltzmann integral formulation can be modified to include
finite deformations by making material coefficients functions of ¢(¢) and ¢, or by defining new laws
between o(t) and e(¢). There are a number of models that involve attempts to model nonlinearity
in viscoelastic material through finite deformation theories (see [18], [23], [33]). For more complete
discussions we refer readers to Chapter 3 of [35] and a lengthy list of references found there.

Many of the various models in the literature have been verified qualitatively and/or numerically
for certain samples under individual tests. However, due to the complex dependence of rubber
materials on many physical parameters, it has been very difficult to obtain a general formulation
that is reasonably simple quantitatively and that captures viscoelastic behavior across a wide range
of materials. For our investigations reported on here, we have used a Boltzmann law with a nonlinear
strain functional. Before turning to a summary of our findings to date, we briefly discuss the often
controversial subject of pseudo-phenomenological models versus physics-based or internal models
in viscoelasticity.

One can rewrite de(s) =




As we have already noted, among the most often used formulations to account for hysteresis is
the Boltzmann superposition model (also called the Maxwell solid in history integral form) which is

based on the hypothesis that the stress is strain rate dependent through a convolution relationship
[14]

o(t) = Celt +/ k(t = 7)é(r) dr . (16)

For many materials, this linear relationship is inadequate to capture the behavior and internal
characteristics manifested in experiments and one must turn to nonlinear generalizations of the
form

o) = 1) + [ ME- e dr (17)

o(t) = / k(i — ) ’fu(g(r))d.r. (18)

The nonlinearities f. and f, are often associated with the material’s elastic and viscoelastic prop-
erties, respectively. Even if one or both are assumed linear, they must be identified along with
the kernel k£ from experimental data. If this is done with little or no mechanistic assumptions
that place constraints on the form of f, f,,k (e.g., see [1],[2],[3] and references therein), such an
approach renders the Boltzmann modeling a phenomenological approach. If, on the other hand,
one uses physical considerations (such as in [8]) to constrain the choices of f, f,, k in the inverse
problem or parameter estimation procedures, the modeling attempt can be thought of as pseudo-
phenomenological. In fact, it is equivalent to identifying the impulse response function for certain
types of (possibly physically-based) internal variable models (Maxwell solids in differential form).
For example, if one considers internal strain models as in [24], then the basic assumption is that
one has a finite number of internal “strain” variables ¢;(¢), 7 = 1,---, N, along with the strain £(¢),
and the stress is given by

N
a(t) = fe(e(t)) + Z_: cjej(1) - (19)

The internal strains might be given by dynamics

dej 4 gj

dt T f]‘(é(t)) yJ=1,---,N, (20)
or J J
S R LS = f! : =1,
e L CURACUIERF RN (21)
If we write the solutions of the equations by
t
S0 = [ eI dr (22)
or
¢ d
()= [ pe(n)yar, (23)
—oo T
then (19) is completely equivalent to (17) or (18) where
N
k(1= 1) fu(E(r) = D ejem M f(e(r)) (24)
7=1



or

N
Bt =) Fle(r) = 3o 0 () (25)

i=1

respectively. In this case, the Boltzmann approach under the assumptions (24) or (25) is completely
equivalent to the internal variable approach. The only real difference in these two approaches lies
in the implementation; i.e., one might start with (17) or (18) and attempt to identify the overall
impulse response function k(¢) without any consideration of internal dynamics, or one might use
(19) with (20) or (21) and attempt to identify the individual decay constants 7; along with the
coefficients ¢; and f;.

If, however, one assumes nonlinear internal dynamics of the form

de;

o tiei) = fil€;) . 7=1--, N, (26)

in place of (20), then (19) cannot be rewritten in Boltzmann form and the internal variable approach
is distinct from a general Boltzmann approach. In this case, one must solve a coupled system (the
overall dynamical PDE in which o appears plus the system (26) coupled with (19)) as opposed to
an implicit internal dynamics system involving (17) or (18) in the PDE’s of deformation.

One might also generalize the internal variable/Boltzmann linear models by defining a gener-

alized stress & = (0,6, --,0(")) and generalized strain = (¢,¢,---,(")) with internal vector
dynamics
do _
- Az + F (%) (27)
dt
so that

If we define X () = e?!, this becomes
t ™
o) = [ 30 Xuylt = Fs(elr) &m0 ) i, (29)
=t

which again is recognized as a generalized Boltzmann formulation. In particular, (18) is a special
case of this formulation with n; = 1 since

%fu(f(ﬂ) = fu(e(r))é(r) = F(e(),&(r)). (29)

The internal strain models of (19) and (20) can also be put in this more general form by taking
€ = (e1,€2, - -,en) and

dé

— = Aé (t

g = A+ FEW)
so that .

0= [ A
and .
o) = Lle(W) &) = Lle) + [ e [AIFE(r)] dr (30)

for @ = (e1,¢2,- -+, cn). These considerations clearly reveal that (19) and (20) are special cases of

a generalized Boltzmann approach, and the primary difference between a Boltzmann and linear



internal variables approach is mainly philosophical. That is, in the Boltzmann approach, one
attempts to identify the impulse response e as opposed to the internal variables approach where
one is concerned with the operator A. In both situations, one must also identify the nonlinearities
fe and f, (or F in (30)).

There is another pseudo-phenomenological approach to hysteresis found in the engineering liter-
ature on viscoelasticity that is related to our remarks above. The so-called Golla-Hughes-McTavish
(or GHM) method (see [20], [21], [29] for readable summaries) can be interpreted as a nonphysics-
based internal variable model approach to viscoelasticity. In this approach, one introduces addi-
tional coordinates (i.e., internal variables) in state space models to account for hysteretic behavior.
The general approach uses complex modulus or loss factor data (modulus or frequency data) to
fit rational polynomials representing the Laplace transform of hysteresis stress-strain relationships.
Specifically, the viscoelastic hysteresis is approximated by adjoining a state variable z with fre-
quency domain representation

2
h(s)= 25+ P
s2 4+ bs+c

This is equivalent to an internal dynamics of the form &,. + b6, + coye = @€ + 3¢, or, in frequency
domain, &,.{s*+bs+c} = {as?+ Bs}é. This, of course, can be recognized as a special case of (27)
by defining @ = (04e, 04e), & = (€,¢,€) and

G=Kz+ Ez (31)

(0 1) (00 0)
K = , F= .
c b 0 8 «a

In the usual engineering practice, one attempts to identify ¢, b, a, 8 using frequency domain data
and then adjoins this to the time domain (e.g., finite element or modal) model via (31). Once again,

the philosophy of this approach is to identify the operator A (i.e., K') in (27) instead of identifying
At
e,

with

The internal variable approach outlined above can be carried out for particular structures and
materials by hypothesizing physics-based internal dynamics. One such example involves finite strain
internal stretch variable models for viscoelastic rubbers as developed by [17] and [25]. These involve
stick-slip models for the viscoelastic response to a large step-strain (see [17] and [25] for details).

3.2 Theoretical Issues

To outline our efforts to date in incorporating hysteresis in our models, we return to the example
involving simple extension in a rod of cross-sectional area A., length £, mass density p with applied
force f(t) at the end z = {. We assume a stress-strain law of the form

o) = geO)+ [ V(=) gu(el). )i, (32

£

where g. and g, are nonlinear functions accounting for the elastic and viscoelastic nonlinear response
of the rubber rod. Our experimental quasi-static data curves (see below) indicate that the rubber
follows different nonlinear viscoelastic constitutive relationships in loading (¢ > 0) and unloading
(6 <0),ie.,

gu(é(S),é(S)) _ { gm(é(s)) 5(8) >0 (33)



where g¢,; and g,4 are continuous nonlinear functions. Note that g,;(e(%;)) is not necessarily equal to
gva(e(t;)) at the “breakpoints” #;, i.e., the points where € changes sign. Thus, we must interpret the
derivative in (32) in a distributional sense. Earlier calculations and experiments suggest that the
rubber does not exhibit infinite memory, but significantly depends only on history of finite length
r. That is, the memory kernel Y is such that Y (&) = 0 for £ > r. Therefore we can approximate
(32) by

t

o(t) = ge(e()) + [ Y(t— 8)igu(€(8)7é(8))d8- (34)

t—r ds

Let us suppose that the ¢; are indexed so that the rubber is unloading for 1z < ¢ < tx41, k odd.
Integrating by parts in (34) and assuming {x < t < tx4+1, where K is odd, we have

o(1) = e+ [ V= )L aul5) s V(g = ) + Y (O)gua(elr)
K
+ DOVt =t )(=1) " gui(e(te)) — goale(te))]
k=1
= )+ [V L ulel5), s + Y O)guate()

K
+ Y V(= 1)1 " gui(e(tr)) = guale(tr))];
k=1

where we have used Y(r) ~ 0. A similar expression holds for loading, i.e., tx <t < tx41, K even.
This is the form of the stress-strain law that we used in the calculations reported on below.

To develop the corresponding dynamic model, we must incorporate these jump terms into our
formulation. Let u(t, z) denote the displacement at time ¢ of the section of the rod originally located
at z,0 < z < (. If we assume that the rod begins its motion at rest with possible deformation A(z)
and fixed end at = 0, we obtain the model for unloading, i.e., tx <t < tx41, K odd,

0%u i du du to du 0*u
PAcW = 5 (Acge(é?_m) + AcY(O)gud(a—QE) + A - Y(t - 5)91](8—96(5)’ m(s))ds
K k41 au au
+ A V(= 1) (=) (G (1) — gua(5- ()] | 0 <@ < (35)
= x Ox
du ou to ou 0%u
(Acge(()_x) + AY (0)gua(50) + A | Y (E—5)gu(5(5), 5.5 (5))ds
K k41 8u 8’&
FA: 3V (1= 1)(= 1) gui G (8)) = Gual (B | lo=s = F(2). (36)
= T x
In general this model should be written in variational form
. 0 du du . du 0%u
pAcl — o (Acge(a—x) + AY (0)gua(z) + Ao - Y(t = 8)gu(5-(s), 55-(s))ds
K k41 du Ju . %
FA V(= () [0 5o (18) — gua( 5o (0] ) = F() i ¥ (37
= T x

10



for an appropriately chosen Hilbert space V. This presumes, of course, that we have sufficient
smoothness so that evaluation of 9% at ¢; makes sense and 2 (g,i(2%(t;))) € V*. Note that the
jump terms and the related theoretical issues do not appear if we suppose that ¢,; = gpg = ¢,. In
this case we can take V. = H}(0,(), H = L*(0,(). If we separate and consider only the linear part,
ie., if g.(§) = FE€+ he(€) and g,(&) = EE+ hy(§), and we ignore h., h,, we obtain

pAcii — (%(EAC(l + Y(O))% rea [ V- 5)%(5)@) = F(1) . (38)

t—r z

Following an approach we have used in earlier treatments of Boltzmann or time hysteresis stress-
strain laws ([1], [2], [7], [8]), we may write our model as an abstract system in a Hilbert space
and develop a semigroup formulation for (38) (see [7],[8]). This in turn can be used to define
(implicitly) mild solutions for the nonlinear system in terms of a nonlinear variation-of-parameters
representation.

For the linear part of the system, one can also develop a variational formulation to obtain an
equivalent well-posedness framework. Our current efforts are devoted to developing the variational
formulation and corresponding existence, uniqueness, etc., for the full nonlinear system with jump
terms.

3.3 Experimental Quasi-static Results

In a series of experiments at Lord Corporation, we tested filled rubber rods in simple uniaxial
tensile deformations. Both ends of the rods were manufactured with metal flanges to be secured
in a test machine, the Instron machine, which has a movable load cell that can apply tension to
one end of the rod while keeping the other end fixed. The software package STD4200 was used to
drive the Instron machine and to produce load-displacement curves upon loading and unloading the
samples. Denoting the loading force by f(¢), the displacement by A{(¢), the original length of the

rod by £, and the original area of the rod by A., we calculate the engineering stress o(t) = %ﬁ) and
the strain () = %(t) x 100%. Two types of sample rods were used: ones filled with carbon black

(CB) and ones filled with silicon (Sil). Quasi-static (# = 0,4 = 5 in/min) stretching/relaxation
tensile cycles were performed on samples.

For each percent strain, the sample undergoes three cycles of loading and unloading to remove
possible small scale Mullin’s effects; this results in stress softening (see [8]). We found that the
first cycle had higher values for the loads than the second and third loops. (Mullin’s effect is very
significant at the initial pulls on the sample. In fact, the CB filled sample was first pulled to
approximately 300% strain and the Sil filled sample was pulled to 150% strain before we recorded
data for lower percent strains.) We used the third cycle for each percent strain for our parameter
estimation problems in the results presented here.

We report here on results for a CB rod (£ = 6.13 in, diameter = .54 in after removal of Mullin’s
effects) and a Sil rod (£ = 7.455 in, diam = .505 in). We assumed no initial strain history for the
rubber samples, and we used the following stress-strain relationship for our computations:

o(t) = ge(e(t)) + t Y(t-— S)Mds, (39)

t—r ds

where Y is the memory kernel, and g, and g, represent the elastic response and viscoelastic response
respectively. As before, r is defined so that Y (r) = 0.

This model conveniently provides a starting point for modeling the hysteresis curves. The
challenge is to identify plausible memory kernels and response functions g., g,.

Based on previous experimental studies (see [35]), we chose an exponential form for the memory
kernel Y. Such an exponential form generates totally nested hysteresis loops in the stress-strain
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curves, a feature we also observed in our experimental data. For Cy and C5 positive, we define
Y (t) = Coe™ @21, (40)

The inclusion of both elastic and viscoelastic response functions resulted from both experimental
observations and earlier work (e.g., see [23], [25]). Elastic materials undergoing finite deformations
require the use of a nonlinear constitutive law, which suggests that rubber materials would also have
a nonlinear function in the stress-strain relationship. Moreover, filled rubber exhibits viscoelastic
and hysteretic properties, which leads to the use of the viscoelastic response function inside the
integral.

We tried a number of linear and nonlinear viscoelastic response functions (see [35] for details).
The relative errors discussed in [35] suggested that a nonlinear function g¢,(£()) is necessary for
both the CB data and the Sil data taken at sufficiently large strains. Looking closely at the data,
it seemed that the viscoelastic response of the rubber during loading was significantly different
than the response while unloading. As a result, we include separate functions ¢,; and ¢,4 in the
viscoelastic response g,,, where g,; represents the response while £(t) is increasing, and g¢,4 represents
the response when ¢(?) is decreasing. This means that g, is now a function of both ¢ and ¢, with
the form given in (33).

Additional curve fitting studies outlined in [35] led to our choice of cubic polynomials for the
viscoelastic response. That is, gui(c) = Yi_gare® and gua(e) = Si_obre®, where {ay, by} are
parameters to be determined by estimation techniques.

The form for the elastic response g. was chosen in a similar manner. Preliminary results
suggested that a cubic polynomial was also a good choice for the elastic response. We define g. by
ge(e) = S _o Ere®, where Ej are parameters to be determined.

The parameters {C%, Fi, ar, b} were estimated by fitting stress-strain data, i.e. minimizing

N
> lo(te) = a(te)? (41)
k=1

for stress data 6. The single-loop data sets used for estimation include a Sil sample stretched to
100% strain, and a CB sample stretched to 200% strain. These strain levels were chosen because
the data exhibited both strong nonlinear and hysteretic characteristics. The results are presented
in Figures 3 and 4. The relative errors are at satisfactory levels, and the shapes of the loops are
closely matched.

relative error = 2.0%
140 30

- - approx

120

— data

N
S

stress
memory kernel Y(t)
P
&

0.4 0.6 0.8 1 0 50 100 150 200
strain time t

Figure 3: Sil rod, 100% strain: (left) stress-strain with cubic g., cubic g,; (right) corresponding
exponential kernel.
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relative error = 0.6%
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Figure 4: CB rod, 200% strain: (left) stress-strain with cubic g., cubic g¢,; (right) corresponding
exponential kernel.

relative error = 0.2%
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Figure 5: CB rod, 100% strain: (left) stress-strain with cubic g., cubic g¢,; (right) corresponding
exponential kernel.

After estimating the parameters with the above data sets, we used these parameters to predict
the stress for smaller strain loops of the same rubber sample. These predictions were quite accurate
for strain levels within 40 percent of the strain level used for the original fitting (i.e., strains at
180% and 160% for the 200% strain data fit, and strains at 80% and 60% for the 100% strain
data fit), but the accuracy declined greatly as the strain level decreased. These observations and
similar findings by [24] suggest that one parameter set may not sufficiently capture the stress-strain
relationship for filled rubber. Looking closely at the CB data, it appears that both the nonlinearity
and the hysteresis were quite different at small strain levels versus large strain levels. Indeed, these
observations led to the conclusion that both a large strain model and a small strain model are
needed.

Since the parameters obtained from the CB 200% data set predicted loops more accurately at
larger strains than smaller strains, we chose this parameter set as our large strain model for the
CB sample. We then performed a separate fitting to the CB 100% data to obtain a small strain
model. These results were similarly satisfactory in terms of both the relative error and the shape of
the loop (see Figure 5), and these parameters produced accurate predictions of the stress for 80%
and 60% strain loops.

In addition to the accurate prediction of smaller individual strain loops, another desirable feature

13



Silicon: 100%, 80% and 60% loops
140 T T T

120+ B : &
- — - approx

stress

L
0.4 0.5 0.6 0.7 0.8 0.9 1
strain

Figure 6: Sil rod, response to 100%, 80%, 60% strains: 100% strain parameter set, predicted nested
loops for 80%, 60% strains; relative error = 3.6%.

Carbon black: 200%, 180% and 160% loops
250 T T T T T

-+~ approx

150

stress

100~

50

strain

Figure 7: CB rod, response to 200%, 180%, 160% strains: 200% strain parameter set, predicted
nested loops for 180%, 160% strains; relative error = 1.2%.

of the stress-strain relation is the ability to predict nested loops consecutively in time. When the
parameters are used to predict individual strain loops, no previous history is assumed and the
calculations are made with one strain loop only. Predicting nested loops, however, requires the
inclusion of all previous strain loops as a part of the history.

After obtaining the fittings for Sil 100%, CB 200% and CB 100%, the parameter sets were used
to predict the inner loops. For the 100% fittings, the inner loops correspond to 80% and 60% strain
levels, and for the 200% fitting, the inner loops are at 180% and 160% levels. Results are presented
in Figures 6, 7 and 8. The predictions are quite satisfactory with respect to both relative error and
shape.
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Carbon black: 100%, 80% and 60% loops
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Figure 8: CB rod, response to 100%, 80%, 60% strains: 100% strain parameter set, predicted
nested loops for 80%, 60% strains; relative error = 1.1%.

4 Concluding Remarks

In the above presentation we have outlined our progress to date in the development of nonlinear
hysteretic dynamic models for MR based elastomers. Substantial experimental validation for our
approach is provided in the quasi-static case. Significant efforts are still required to achieve similar
status in the full dynamic case. Moreover, to attain the level of modeling required for design and
feedback control of active MR elastomers, a major effort remains on response of the elastomer in
the presence of an external magnetic field.
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